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ABSTRACT

We consider the problem of minimizing a differentiable function of n parameters with
upper and lower bounds on the parameters. The motivation for this work comes from the
optimization of the design of transient electrical circuits. In such optimizations the parameters 1
are circuit elements, the bound constraints keep these parameters physically meaningful, and
both the function and the gradient evaluations contain errors. We describe a quasi-Newton
algorithm for such problems. This algorithm handles the box constraints directly and approxi-
mates the given function locally by nonsingular quadratic functions. Numerical tests indicate
that the algorithm can tolerate the errors, if the errors in the function and gradient are of the
same relative size.

1 This paper was presented at the SIAM National Meeting,
June 16-18, 1976, Chicago, lllinois.

* This Research was sponsored in part by the Air Force Office of Scientific Research
(AFSC), United States Air Force, under Contract F44620-76-C-0022.
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Introduction

We consider the following optimization problem: Given a real-valued differentiable
function f of n parameters x= (x,...,X,)), find an xopt such that f(xopt) < f(x) for all x in the

box C= {x | a <x;

i< Jsbj, 1<j<n}. Lower bounds a; = -«, and upper bounds bj = 4o are

i

allowed. We will describe an efficient variable metric algorithm designed for this class of
problems where f and its gradient may be evaluated with errors. At each iterate x, we
determine a direction of movement d. Then a scalar a* is chosen such that the next iterate is
x*= x+a*d and f(x*)<f(x). The change in x and in the gradient g are used to update an

approximation H to the inverse of the Hessian of f. Typically, d is the corresponding approxi-

mation to the Newton direction on some subset of the constraints at x.

We note that "box' constraints can be used to restrict the parameters to a region where f
is well-defined or where the parameters are physically meaningful. Box constrained problems
arise naturally in circuit design problems which served as the primary motivation for this work

(See section 2).

Members of the one parameter variable metric family, Broyden [2],

1 (Hy)(Hy)T ssT s Hy (s Hy

a b b a b a
have been used to generate quasi-Newton algorithms of the above type for minimization with
and without constraints. Fletcher [3] and Powell [4] survey much of the relevant literature.

Gill and Murray (5] contains additional information and bibliographies.

In formula (1) and in the remainder of the paper, s denotes the change in parameters x
achieved at the current iteration, y denotes the corresponding change in gradient, g denotes the

gradient of f at the current iterate x, H denotes the approximation to the inverse of the
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Hessian matrix at x and G=H"'. In (1), a=yTHy and b=yTs. The superscript * denotes
updated versions of x, g, s, y, H and G. Q will be used to denote the Hessian of { at t.e

iterate x. A>o will denote a positive definite matrix A.

We also use formula (1). We want to choose an update that can determine the true
character of the Hessian matrices (we will not force these approximations to be positive
definite), and that can accept arbitrary directions of movement without requiring projections of
the Hessian matrix approximations. If the Hessian approximation is indefinite on some
iteration, we may want to search along a direction that is not necessarily a quasi-Newton
direction on some subset of the constraints. Moreover, if no information is lost when const-
raints are encountered, we can use the approximate Hessians to tell us, at each iteration, what
constraints we should try to drop. These requirements lead us to the update in (1) corre-

sponding to ¢ = b/(b-a), known as the symmetric rank one (SR 1) update,

(Hy-s)(Hy-s)"

H* = H -
yT(Hy-s)

(2)

We also have an additional requirement that the procedure w2 choose should not be too
sensitive to reasonable errors in the function and gradient evaluations in the sense that it
should achieve a minimum to within the specified error. Because the updalc in (2) can accept
arbitrary directions of movement and inaccurate line searches, we therefore expect it to be

fairly insensitive to reasonable errors.

To avoid getting lost in detail we will describe only the basic ideas in the algorithm.
Where possible, the procedures used are supported by relevant Lemmas and Theorems.

Otherwise we try to provide the heuristic reasoning behind the adoption of the procedures.

In section 2 we describe the particular application, electrical circuit design problems,

which motivated the development of this algorithm. Typically, for such problems each
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function and gradient evaluation is expensive, costing many times the cost of the auxiliary

variable metric computations. Furthermore, these values are computed with error.

In Section 3, the basic algorithm is outlined. In Section 4, we further motivate our choice
of the SR1 update, discuss the difficulties in updating occasionally encountered, and proce-
dures for dealing with such difficulties when they occur. Some of this material is more fully
developed in Cullum and Brayton [1]. The updating tests used are directly related to questions
of dependency of the directions of search generated and of the singularity of the approximate
Hessian matrices generated. We do not require the approximating matrices to stay positive

definite, only nonsingular.

In section S, we describe the procedure used for determining the direction of movement at
each iterate. A quadratic program whose size equals the number of active constraints is solved
at each interation. If this fails for some reason, a full-sized QP is solved. This differs from
other procedures, (see Mangasarian [6] and Fletcher [7]), which solve a full-sized quadratic
program at each iteration. In Section 6, we describe the scaling heuristics used. The scales
obtained are used to generate minimal step requirements in each line search, to obtain an
initial guess on the Hessian approximation, and in determining when a constraint is on a

boundary.

In Section 7, we describe briefly the line search procedures used. Bending, due to
McCormick [8], is used to avoid zigzagging. Searches are made along lines not rays. Section

8 contains remarks about the use of non—quasi—Newton directions and the convergence test.

In Section 9, the results of several numerical tests are described. Two types of tests were
made. One to demonstrate results for box constraints, and one to demonstrate the behavior of

the algorithm when there are errors in the function and gradient evaluations.

Extensions to more general constraints are not discussed.
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2. Circuit Design Applications

The following simple example illustrates the use of optimization in time domain, circuit

design problems.

Example 1.

E(t) 2

x

Ay
=
0<
=

Given an input voltage E(t) determine appropriate values of the resistances x| and x, to make
the output voltage V (t) match a specified desired voltage V(1) as closely as possible in some
norm. For example, minimize, f(x)= |V, - V|2, where |+, is the L, - norm. V, (and thus
f(x)) is evaluated by solving a system of ordinary differential equations that describe the
voltages and currents in the circuit. In addition, the resistances are constrained in size,
ajSstbj. i=1,2. For example Xj 20 is a restriction that if violated would produce a circuit

that would not make sense physically.

In general in a transient circuit design problem, the function to be minimized has the

form

i
f(x) = j h(u(x,t),x,t)dt 3)
(8]

. BT —— h
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with the constraint set C={x|a<x<b} . u(x,t) is the solution of a system of ordinary differen-

tial equations which depends on the parameters x:

u = W(u.x,t) telo.T]. (+4)

Using variational arguments (see for example, Hestenes [9]), we can show that the gradient of
such a function, g(x), is expressible as the integral of the Lagrange multipliers A(t) associated

with the differential equation constraints (4). For example,

3 Tt >
ou oh . oW
g(x) = -AT(O)—= + f [— - AT()—(u,x,1)] dt (5)
oOXx 0 OX oOX
where
. owT oh
u, = u(0),A = - A+ —, AMT)=o0
ou au

and O denotes partial derivative. This method of obtaining the gradient is called the adjoint
method. A 3 parameter problem described in Brayton, Hachtel, and Gustavson [10] has, 180

nodes, 460 branches, 112 nonlinear elements and 192 differential equations.

Analytical expressions for f and g are not available. Both are computed with truncation
error, due to the finite step size used in solving the differential equations, and each evaluation
is expensive. We note, however, that once the function is evaluated at some x, then the
corresponding gradient evaluation costs approximately another function evaluation. The
truncation error varies from iteration to iteration and is controlled roughly by parameters set
by the user. The greater the accuracy required, the longer the time required to evaluate f.
Thus, the philosophy of optimization is different here than in the typical minimization

literature. We do not want and in fact cannot compute arbitrarily accurate minima; we want a

"good enough" approximation. This error situation is illustrated in Figure 1 where the error in




Page 6

the function evaluation of a unimodal function of | variable is shown. A similar graph could
be drawn for the gradient of f. We know [ only to within the tube. Any line search to find
the minimum of f in Figure 1 should stop within the indicated stopping region, because to
within the specified error, all such x are equally good minima of f. If a better approximation
to the minimum is required, the user supplied error control parameters must be tightened, but

then each function and gradient evaluation becomes more expensive.

The truncation error affects the line search, the updating, and the convergence tests.

Basically, we need a forgiving algorithm, one where the steps do not have to be done exactly.

It had been proposed to one of the authors that the proper approach in sucti a situation is
to consider the output of our function evaluator as an approximation to f, call it f4, and then
to minimize f* exactly. This makes no sense in this setting, since f*=f+e,, and the gradient g®
= g+e;, where e, is not necessarily related to e, and neither e; nor ¢, is a well-behaved
function. We have to admit that we do not know f and g precisely and must handle the

computations accordingly.

The minimization procedure was therefore designed to be flexible and user-controlled.
Probably, it is best to use it interactively. Users set parameters determined by their knowledge
of the accuracy of f and g. These parameters can be altered to check or improve the accuracy

of the solution obtained.

In Section 9 numerical experiments of the following type are discussed. We modify the
program that evaluate f and g so that f_ = f+¢ and g, = g+¢, are returned to the optimizer
where ¢, and ¢, are random variables with |e;| < (a+r|[f]) and similarly for les|. a

represents an absolute error in f and r a relative error.

|
|
{
|
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Figure 1
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3. Outline of Algorithm.

The algorithm is a quasi-Newton method and assumes that { can be adequately approxi-
mated near its minimum by a nonsingular quadratic.  As with all quasi-Newton methods,

stationary points are computed. There is no guarantee that these are local minimizing points.

Davidon [11] uses the family of updates in (1). Many of the ideas in this algorithm could
be used in any extension of Davidon [11] to handle constraints and errors. Although the SR1
3 update formula has limitations, these can be overcome and this will be discussed in Section 4.

We only note here that the tests used to avoid these limitations are connected with maintaining

a) independence of the directions searched and b) nonsingularity of the matrices generated.

a) and b) are important in any variable metric algorithm.

The algorithm was programmed to store and update both the Hessian (G) and inverse
Hessian (H) approximations; however, it can be easily reprogrammed to use only G, and this is

demonstrated in later sections as each part of the algorithm is described in detail.

A. Determination of "Best" Feasible Direction.

At each iterate x we have an approximate Hessian G, and we use the quadratic approxi-

mation to changes in f at x,

& AxT Gax T
Af(x) = q(AX) = ———  + g' Ax, (6)

[§9)

to determine a direction of movement at x. If no constraints are active at x, we search along
the quasi—-Newton line z = x+ a Hg through x. If one or more constraints are active at x, we
solve the quadratic program, minimize q(Ax) over all feasible Ax, to obtain the next direction
of search. We reduce this to a quadratic program (QP) of size equal to the number of active

constraints (see Section 5). If we obtain a solution to this QP which is a direction of descent,

i L G e
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and that satisfies other criteria, we search along it. If not, we revert to a full size QP. Note
that in using a QP we can generate a direction of movement d=Ax that may correspond to
dropping no constraints, some, or all of them. Also note that if G is indefinite, such a

direction is not necessarily a quasi—-Newton direction on some subset of the contraints.
B. Line Search.

We then compute x*=x+a*d where a* is chosen to roughly minimize f on this line. We
must search along lines (instead of rays) since G need not be positive definite. Bending, (see
McCormick [8],) is allowed in the line search to avoid zigzagging which can occur if we
bounce on and off of constraints without achieving minimization. We require that |a*d| be

greater than some minimum step because of error considerations (see D and E).
C. Updating.

The resulting overall changes in x, denoted by s, and the changes in gradient g , denoted

by y, are used to update G (and H) using the SR1 update formulas:

(y-Gs)(y-Gs)T

G*=G +
sT(y-Gs)
(2’)
(Hy-s)(Hy-s)T
VT SR Lo 5. .2 L

y T (Hy-s)

Updating requires that the denominators in (2’), s7(y-Gs) and yT(Hy-s) do not vanish. In
Section 4, we discuss the updating tests. If any of these tests fail, the algorithm uses a
direction of movement other than a quasi~-Newton line on some subset of the constraints. The
non quasi-Newton directions discussed theoretically (see Theorems 3 and 4), are eigenvectors
of projections of G and the coordinate directions. However, for simplicity, in all the numerical
tests run, only coordinate directions were used. Test failures occurred infrequently and were

easily handled using coordinate lines.
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D. Scaling.

In circuit design applications experience has shown that some advantages can be obtained
by scaling the starting Hessian approximation G, (and H_ ). A heuristic based on the user
supplied upper and lower bounds and the initial values of the parameters is used. See Section

6 for details.
E. Error Control.

The user specified tolerances are combined with the scalings generated to obtain toleranc-
es used in (a) determining when a parameter is on a boundary and (b) generating minimal
steps used in the line searches. These tolerances can be set to yield a crude approximation to

the optimum which can then be refined by reducing the tolerances.
F. Convergence Test.

Since errors are present, the normal convergence tests requiring a small quasi-Newton
direction are not appropriate. Therefore, a successive search of the n coordinate lines through
a given iterate without achieving descent terminates the procedure. These searches usc a
minimal step size generated from information provided by the user. We note that with box
constraints, at the optimum, the Lagrange multiplier for the ith parameter is simply the jh
component of the gradient with the appropriate sign. Therefore, a simple check of the
gradients of the active constraints is sufficient to test for stationarity. The procedure also
terminates when a consistency test on the function and gradient evauations is violated more

than a specified number of times.

it i vl
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4. Symmetric Rank 1 Update.

As stated carlier the symmetric rank 1 update was used because it satifies the require-

ments listed in the introduction. Theorem 1, see for example Fiacco and McCormick [12], is a

statement of most of this fact.

Theorem 1. Let f=xTQx/2 + dTx be a quadratic function. Let Sj» 1<j<n be arbitrary
b directions. For any initial x°, and HY, successive movement along the Sj with updating on each

:
J‘ step using (2), will yield QH_ g=g for some m<n, if each update is defined.

This theorem can be relaxed to include k>n steps, with H*=H whenever the update is not
defined. Murtagh and Sargent [13], [14] and Powell [15] have used the SR1 update in
algorithms with mixed results. In Davidon [11] an optimally conditioned update is chosen on
each iteration; the SR1 update is the optimally conditioned update in some situations. Powell
[16] in analyzing the Davidon [11] work has used an update formula that is a modification of
the SR1 update to preserve desirable properties of the Hessian approximations such as positive
definiteness. The SR1 update need not stay positive definite, and it is susceptible to ill-
conditioning; however, Theorem 1 makes it attractive for constrained problems, where

successive directions of movement can be quite general.

The other consideration which lead us to the SR1 update is the following. There are very
basic differences between minimization problems with parameter constraints and problems
without constraints. For unconstrained problems the assumption, that the {unction being
minimized is locally convex, is necessary for the existence of a minimizer; thus approximation
by a positive semidefinite, quadratic function is plausible. However, when constraints are
present, local convexity is not necessary for existence, as the simple example f(x)=

2 « . .
-x“+4,1<x<2, demonstrates. We note, however, that it is necessary for the problem to be

S—
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locally convex in those variables that are interior to the constraints at the minimizer of f.
Therefore, since we intend to keep a full Hessian approximation rather than a projected
Hessian approximation as is done in Goldfarb [17], we should be able to approximate general
quadratic functions not just positive definite ones. With a full approximate Hessian we can
utilize the directions of negative curvature to improve convergence. The theory associated
with the SR1 update is not restricted to the case where [ is a positive definite quadratic
function. Therefore, this update can pick up the true character of the Hessian. In regions of
negative curvature, the algorithm described here can generate negative curvature directions of
search, but does not choose such directions in an optimal way. A drawback, of course, is that
the SR1 Hessian approximation can become indefinite even when f is a positive definite
quadratic function, so the desire to approximate general functions is only imperfectly satisfied
by use of this update. We would really like to have an update formula that could accept
general directions of movement and that would simulate the Hessian accurately. The Davidon

[11] and Powell [16] analysis may yield such a formula or procedure.

In line with the above comments, and in contrast to most existing algorithms (Murtagh
and Sargent [13] and Gill and Murray [18]) we do not try to keep H* positive definite, we
worry only about possible dependence of the directions of search generated and singularity of

the approximating matrices H* or G*.

Now consider the SR1 update. The denominator in (2’) can vanish if (7.1) Hy=s or
(7.2) Hy#s but yT(Hy-s)=0. The following theorems tell us the significance of (7.1) and

(7.2), and how to circumvent these difficulties.

Theorem 2. Consider any variable metric algorithm for which a) at each step H* is given
by (1) for some choice of ¢, b) the direction of search d at each stage is the quasi-Newton
direction on some subset of the box constraints, and (¢) x*=x+a*d where a* is chosen by

some rule. Then;
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(a) If f is any function, at some step Hy=s, H is nonsingular, and the active constraint set did
not change from x to x*, then d* is a multiple of the old direction d.
(b) If [ is quadratic, Hy=s at some step, and H is nonsingular, then s is the true Newton

direction at x on the current set of constraints.

Note that this result holds for any variable metric algorithm generated using formulas
from (1). This theorem, as well as Theorems 3 through 6, was proved in Cullum and Brayton

[1] for the unconstrained case.

Proof of Theorem 2.

(a) Assume Hy=s and H nonsingular. Let E be the columns of the identity matrix
corresponding to the inactive constraints at x. Thus, ETGE is the projection of G onto the

space spanned by the E. If we set

AxTGAx :
A S e 4 gTAx,

then the quasi-Newton move s from x to x* is s=a Ev where
v=(ETGE)' ETg . (%)

In (8) T denotes the pseudoinverse of EVGE. Similarly, the quasi-Newton direction from x*. il
the constraints do not change, is d*=E(ETG*E)'ETg* Since Hy=s, then g*=g+Gs and G*=G.

Therefore, ETg*=ETg + «ETGEv and from (8),
ETGEv* = ETg* = (14+a)ETGEv.

Hence, v* differs from v by some vector in the null space of ETGE. But v* and v are obtained

from the pseudoinverse, which gives vectors whose projections on this null space is zero.

(b) If f is quadratic, then the true Newton direction on the current constraints at x is the

—
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vector Ew where w is the vector of minimum norm that satisfies the equation ETQEw = - Elg.
Since Hy=s=aEv, then QEv = GEv and (ETQE)v = (E'GE)v = - Elg. Therefore, v=w.
Q.E.D.
{ Thus, condition (7.1) indicates dependency problems for the directions of search being

generated, if f is not essentially quadratic in the region near x.

Now consider condition (7.2). We have the following theorem, whose proof is independ-
ent of the presence of constraints and is given in Cullum and Brayton [1]. It only applies to

the SR1 update and connects (7.2) to the singularity of the update G*.

Theorem 3. For any f, if at some step of an SR1 procedure Hys#s, but y1(Hy-s)=0, then
the SR1 updated Hessian approximation G*, given by (2’), is singular and Hy-s is a zero
eigenvector of G*. Conversely, if G is nonsingular and G*z=0, then z = p(Hy-s). A similar

f result holds for H* when sT(y-Gs)=o0 but y-Gs#o.

Theorem 4 tells us how to correct problem (7.1), and Theorem 5 tells us how to handle
problem (7.2). Each is an extension of results in Cullum and Brayton [I] to include const-

raints.

Theorem 4. Let f be any twice continuously differentiable function. Let Q be the Hessian
of f at x*. Let w,, 1<k<m, be orthonormalized eigenvectors of ETGE where E is the nxm
matrix whose columns are + or - the columns of the identity matrix that correspond to the
inactive constraints at x*. Then if the current G does not generate the true Newton direction
on the set of constraints at x*, there exists a wy_such that (g*)' Ew, #o0, (i.c. Ew, is a feasible

descent line) and (HQ-DEw, #o.

Proof of Theorem 4.

Let

e —— .
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W,= {w, | ETGEw, =ETQEw,} and
Wy= {w, notin W }.
If for all w, € W5, w, T(ETg*)=0, then
ETg‘= W, v
where the columns of W, are just the vectors in W,. Note that each vector in W, is an
eigenvector of ETQE, and therefore, is also an eigenvector of (ETQE)'. Therefore, the true
Newton direction Ez* satisfies
z* = - (ETQE)tW,v=- w,ATv
where A T denotes the diagonal matrix of the reciprocals of the nonzero eigenvalues of ETGE
corresponding to W, with the reciprocal of any zero eigenvalue set to zero. Similarly, the
quasi-Newton direction Ez satisfies
z= -(ETGE)tW,v = - W AT v

Therefore, z*=z, contradicting the assumption that the current direction is not the true
Newton direction. Thus, there must be at least one wy e W, such that w, TETg*#0. But, w,e
W, implies that ETGEw, #ETQEw,_and since G is nonsingular, (HQ-DEw, #o.

Q.E.D.
Thus, theorem 4 says if at some point x* we have Hy=s, then either a) by considering the
eigenvectors of ET'GE we can obtain at x* a direction of descent d*=FEw, for some k and for
small steps a, Hy*#s*, or else b) -Hg* is the true Newton direction at x* on the constraint set.
Throughout the discussions, if ETGE is not of full rank, we call the direction obtained using
the pseudoinverse (ETGE)! the quasi-Newton direction. This yields the direction of minimal
norm satisfying the quasi-Newton stationarity conditions. We should note that since E

contains only columns of the identity it is trivial to compute E'GE.

Theorem 5. Let f= xTQx/2 + cTx+e, where Q is nonsingular. Let Hys#s, but
yT(Hy-s)=0 at some step in an SR1 procedure. Then at x there exists a feasible direction

d=s+pBe; for some coordinate line ¢; and some B#0 such that for some p#o0, x**=x+u(s+fe)
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is feasible, f(x**)<f(x), and

(y*v)'l' (l{y‘#_stt)¢0 9)
where y**=g**-g g**=x**_x
Note: For any quadratic, (9) is independent of u. We write Theorem 5 as above because we

must apply it to non—quadratic functions.

. and B, h([i):a»j/iz+bjﬁ where a..= (ch)"‘

Proof of Theorem 5. Define for any e; : i

(HQ-I)ej and bj= (ch)'r(HQ-l)s. Then (9) is equivalent to h(f)#0. Since the ajj 1<j<n,
are the j'M diagonal entries of the indefinite matrix Q(HQ-D), it is possible that all ajj=o.
However, b,- is the projection of the non-zero vector (HQ-I)s onto ch and Q is nonsingular;

hence there must be some € such that bj;é().

Define U= lejl bj;éo or ajj;éoi. As in Theorem 4, we let E correspond to the inactive
constraints at x*. Note that if ejeul, then h(B) can vanish for at most one nonzero value of

B. Moreover, if h(B)=o0 then h(B/2)#0. There are 2 cases to consider.

First assume that there exists an ¢;eU; such that ej"'E ETg*#0. That is, ¢; yields a
feasible descent line at x*. In this case we simply search along y= x‘+licj for a minimum or
until we reach an additional constraint. This defines *, and if h(B*)=o, then B* is replaced

by B*/2. Thus, x**= x+s+p*e; satisfies the requirements of the theorem.

In the second case no such e; exists. We show that any ¢; from U is acceptable.  Again
there are 2 possibilities. First suppose there is an c,eu, such that ch;éo. Then we may use
this e; with B free, but its sign chosen so that fe;Tg < o. Since s is a descent direction at x,
s+ﬁej will be also. Then we search for u so that f is minimized in the direction s+[fcj or a

new constraint is encountered. The new point is x**= X+u(s+pe;). If there is no cj(U, such

that F,e]-#o, then all cjeU, correspond to active constraints. Pick any ¢;eU; and choose the
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sign of B such that, x+B¢:J is feasible at x for all B of this sign. For example suppose >o0.
y=x+pe; may or may not be a descent ray, but for B small enough y=x+s+fe; is a descent

ray. For example, choose

1 |gTs|
IBl <« ———m .
2 Igj|

Now we minimize along this ray or move until a new constraint is met. The new point is x**=

x+u(s+Bej).

Q.E.D.

Observe that the form of s is not used in the proofs of Theorem 3, 4, or 5, so the results
are valid for any s, and even when we allow bending. In Theorem 2, s is required to be a
quasi-Newton direction on some subset of the constraints. Theorems 2 and 3 generate the
tests used on each iteration of our algorithm before updating. Theorems 4 and 5 tell us what

to do when one of these tests fails. The tests are as follows.

Test for dependence of directions of search. We check whether

| | Hy-s | |

(10.1)
[ Is]|
and
-Gs
s (10.2)
[yl
For a quadratic, (10) can be written as
(HQ-Ds | |
praahs il o (1)

[ Is]|
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and

[ | J-GQhHy | |
Pyl

=8, (11.2)

so using (10) we are checking whether s is a zero cigenvector of (HQ-I) and whether yis a

zero eigenvector of the counterpart matrix (I-GQ-!).

Test for Singularity. Using Theorem 3 we check the following, rather than the denomina-

tor of the SR1 update,

[ 1G*(Hy-s) | |

€ 12.1)
[ 1Hy-s| |
and
[ |H*(y-Gs) | |
S € (12.2)

[ 1y-Gsl |

We note that we do not have to compute G* or H* to compute these quantities. In fact

condition (12.1) equals

fyV"(Hy-s)| | 1 y-Gs] |
FIHy-s1 | |sV(y-Gs)|

13}

and condition (12.2) is just the reciprocal of (13). By checking both G* and H* for singulari-
ty, we are (at least heuristically), controlling the condition of each of these matrices by

controlling the largest and the smallest eigenvalues of each.

In Cullum and Brayton [1], we give an example using the tests in (12). These tests are
violated only infrequently. In fact in the algorithm as programmed, eigenvectors of H are not
computed, only coordinates lines are used. In each case that cither test (10) or (12) has
failed, the simple procedure of taking an ¢j that is a direction of descent at x* has given a good

update. Typically, only | extra line scarch was needed 1o complete the update. Theoretically,

P — e W
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the procedures proposed could be costly, involving several line searches. However, in practice

the cost seems nominal.

If tests (10) and (12) are both passed, then the G and H matrices are updated. Before
proceeding we note that only G is required for these tests, since we can compute the vector

Hy-s by solving the equation Gp= y-Gs for p.
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S. Constrained Directions of Search

Many lincarly constrained variable metric algorithms require minimization on the current
set of constraints before any of these constraints can be dropped, (see for example Gill and
Murray [ 18] and Goldfarb [17].) In addition these algorithms often drop only one constraint at
a time.  Algorithms which allow dropping several constraints simultancously, generally solve
full dimensional quadratic programs at each iteration to determine which constraints to drop,
(see for example Fletcher [7] and Mangasarian [6]). For additional comments see Gill and

Murray [5].

The scheme proposed below is equivalent to solving a dual to the original problem. This
dual is the same size as the number of active constraints. If at a given iteration there are
active constraints, we consider the following quadratic programming problem; minimize,

AxYGax :

q(Ax)= ——— + gTAx (14)
subject to Er\.lxg(), In (14) G is the current Hessian approximation, F_ is the nxm matrix
whose columns are the inner normals to the current set of active constraints. Thus q is an
approximation to the change in f at x for any admissible Ax. Nominally, this is a full dimen-
sional problem. However, Lemma | states that we can replace (14) by a problem whose size
equals the number of active constraints.  The quadratic programming algorithm in Canon,
Cullum and Polak [19] is used to solve this equivalent problem, see (15). If this algorithm
finds a solution to (15) such that this Ax is a direction of descent for f, Ax 'G Ax > o, and the
diagonal elements of the projection of G onto the free constraints are all positive, then we
use this as our direction of search. Otherwise we revert to solving the full-sized quadratic
problem in (14), imposing upper and lower bounds and using Fletcher and Jackson [20]. The
algorithm in [20] works on any QP if G is indefinite, then the direction generated need not

be a quasi-Newton direction on some subset of the constraints.  If the direction generated
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vanishes, we choose a coordinate line to search. This is equivalent to checking the multiplicers

and releasing a constraint whose multiplier has the wrong sign.

Lemma 1. The QP in (14) is equivalent to the following QP of size m, the number of

constraints active at x: minimize

vI(E,;THE v R
el e - vIE THg (15)

<

subject to v>o. Equivalence means equivalence of the associated necessary conditions of

optimality.

Proof of Lemma 1.  The necessary conditions of optimality for the problem in (14) are

GAx + g - Egv = o with v>o, vI(E,TAx)=0, and E;TAx>o0. (16)

Since G is invertible, we have

Ax + Hg - HE,v=o0. (L7

This equation projected onto the active constraints becomes

E;"Ax + E;THg - ETHE,v = o, vT(E,TAx) = 0, v > o, ETAx > o. (18)

But these are the necessary conditions of optimality for the mxm QP, in (15) where the
multipliers for this problem are just the vector E.FAx. Thus any solution of (16) yields a
solution to (18) and conversely, given a solution to (18) we can generate a solution to (16)

using the equations in (17) to solve for the unconstrained components. Q.E.D.

’
If G>o, then any solution of (16) yields a minimizing point of q, and Ax is the optimal

direction of movement for q.

kil
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We note that if only G is available in the program, we can generate the necessary vectors,
HE_, for this computation by solving the equations GP=E_ for the matrix P. We also note
that (15) is the dual of (14). Murray [21] mentions using the dual problem, but no details are

S given.

For this approach to be useful, we need a good quadratic programming algorithm.
Obviously, if [i\'H!{\ is indefinite, (15) has no solution. If we put an upper bound on Ax,
then a solution could exist, but the reduction in dimensionality would not occur. The quadratic
programming algorithm described in Canon, Cullum and Polak [19] has the following proper-

ties. Consider the QP, minimize

subject to Fx>0. Then (a) if A>o and a finite solution exists, this algorithm will find that
solution, (b) if A>0 and there is no finite solution, the procedure will generate an infinite
ray, and (c) for general A, in a finite number of steps, this procedure either gencrates a z
that satisfies the stationarity conditions or indicates that no solution exists. For our problem

(15), (b) cannot occur.

Lemma 2. If G>o, then E;IAHES?_O and the QP in (15) always has a finite solution.

Proof of Lemma 2. Since E;"HE5 is the projection of H>o0 onto the space spanned by E_, it
must be positive semi-definite on this subspace. No infinite solution can exist since the null
space of E_,THE, and of the constraint v>o is trivial.

Q.E.D.
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The use of (15) allows us to work with QP’s of the same size as the current number of
active contraints.

Both QP’s allow us to drop none, one, some or all of the active constraints.

search.

The QP gives us only the direction of search and not the step size which is obtained by a line
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6. A Scaling Heuristic.

In the circuit design applications, because of wide variations in scale between different
elements of the circuit, some advantages can be obtained by scaling the starting Hessian matrix
G,. We want to determine a matrix P such that the function F(x")= f(Px!) is better condi-
tioned than f(x). Powell [22] has shown that by simply sctting G,= P 'P-! instead of I,

subsequent steps in the x-space are identical to steps that would be taken in the x! space if we

exolicitly made this substitution and worked directly with F(x!).

The following heuristic was used to generate a P. We use a simple diagonal scaling. It is
assumed that the user has supplied realistic upper and lower bounds 4 and hJ, 1<j<n, and/or
a reasonable initial value xj" for each parameter. Then P is computed as follows.

pjj = (min (i xJ"I, (bj-ui)) if Ixj"l >land | < hj-u_i <o
max ( IxJ“I ) (bl-aj)) if Ixi“l <1 and hi-u_l < 1
max (1, Ixj“l) if bj-a;=oc

1 otherwise

L

For example if x;° = 102, bj-a; = 104, then p;; = 102 If x, = 107, b-a; = 10% then
p;; = 102

Whenever the algorithm is restarted the G matrix is rescaled using the current iterate.

We note that setting G equal to a diagonal matrix may mean that G, 40Q in some
problems. In particular this may happen if the variables are separable. But, of course, we do
not need G, Q, we only need QHg to approximate g. We note also that as indicated in Bard
[23] scaling or lack of it in any of the variable metric schemes can cause serious distortions in
the approximating matrices and lead to ncar singularities. In the minimization procedure the
user should include all the information about the given problem that is available, and should

anticipate difficulties.  When difficultics occur, one obvious thing to try is rescaling the G

R P TP T T -~
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matrix, perhaps using the relative sizes of the current gradient components as scalings on each

component.

The scale pj; are also used in the program with the user—set tolerance & for (a) testing
when a parameter is on a boundary and (b) generating minimum steps that are used in the line
searches. These tolerances can be set to yield a crude approximation to the optimum which

can then be refined by reducing the tolerances.
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7. Line Search Procedures.

For completeness the line search is outlined, but no claims for the superiority of this
method are made. The new elements are the minimal step requirement which is put in to deal
with errors, and the use of bending. Except for the gradient at x, the line search uses only

function valucs and thus can be used even if the gradient is being approximated.

The initial step along the line of search is obtained by using the current quadratic
approximation G. This first step is either [[d] |g'd|/[d'Gd| or the distance to the closest
boundary, which ever is smaller. We note that for directions of negative curvature this is not
an optimal choice. If a constraint is encountered before the minimum is bracketed, we project
d onto the new constraint and continue to move along the bent line, until a bracket on the
minimum of f is achieved. Once the minimum is bracketed a quadratic is fit to the 3 function
values that form the bracket. Steps out are obtained using quadratic extrapolation. If a
concave fit is made on some step, (indicating negative curvature), a larger extrapolation
outward is made. Observe that if we fit a quadratic on a bent portion of the line of search,
see Figure 2, then we can expect only a crude fit, since the one-dimensional quadratic

approximation to f would be different on each arm of the bend.

DIRECTION OF
A SEARCH

X, CONSTRAINT

— BENDING OCCURS

\\

G __.__2.\

\\

\\
S

Xy

Figure 2




Page 27

One could avoid this problem by computing gradients at the 3 points in the bracket and then
taking the proper combination of gradient and function values at 2 of the points to fit a
quadratic on the associated subinterval. We, however, did not do this. In our implementation,
the bending is done in the function evaluation subroutine and not in the line search subroutine.
The steps in the line search are taken along the original line, but the function is evaluated at

the projections of these points onto the constraints, see Figure 3.

«—— CONSTRAINT

PANS
DIRECTION OF "1\ "=~2~_ h,
SEARCH X, §=~""X7 >~
’_’—-—.\
X —‘_’— xl3 ~

Figure 3

The quadratic fit is made along d using the values x;, x5 ', x3', however, in each case, with
the function evaluated at the projected points x|, X5, x3. This simplifies the search routine.
As shown by McCormick [8] bending prevents jamming or zig-zagging, the phenomenon where
the minimization procedure is completely controlled by the constraints (Zoutendijk [24]).
Note that when bending occurs, the change in x, s = x*-x, is not in the initial direction d,

hence is not a quasi-Newton direction.

Even though we are using the SR1 update we require line scarches because they are

beneficial in controlling the condition of the matrices generated. If fis a quadratic function,
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then each successful update increases the dimension of the space S, where seS implies that
Gs=Qs. Obviously, if the directions s are arbitrary, then the overall problem, find Q from
QS=Z=GS can be arbitrarily poorly conditioned. However, with line searches, the successive

directions are more likely to be nearly conjugate and thus sufficiently independent.

Minimization also helps maintain positive definiteness. If G>o0 and s'(y-Gs)>o, then
G*>o0, although this is not necessary in order that G*>o. If we minimize, then sTyx -gTs>o
which is certainly necessary for s1y>sTGs>o. If we do not minimize, then (g*)'s would be

positive if we overshoot and negative if we undershoot, and there is no guarantee that sTy>o.

In the framework of function and gradient evaluations with error, it is important not to
evaluate at points too close to each other, otherwise the error may dominate the minimization.
Prior to the beginning of the optimization procedure, the user has to specify a tolerance 4,
which is the minimal step allowed in each parameter, if each parameter is scaled to 1. This
tolerance is scaled for each parameter x; by the scaling factors Pjj computed in the H?
computation previously described in Section 6. At the beginning of each line search a minimal
step

Min lﬁb—

| (20)

1<j<n d;

is computed, where d is the direction of search. For example, if l()"‘Sx]s 10-2, 10<x, <100,
and x°= (103, 20), then p; ;= 102 and py,= 20. Then if the function had been evaluated at
x no further function evaluation is allowed in the set {x| [x;-x;[ < 1026, | X5-x,5 | <20461.
Thus, it is possible, even though ¢'d < o, for the search to indicate that no descent was
achieved, if a step larger than the minimal step could not be taken. In this case an alternative

line is searched (as implemented a coordinate line). Probably a better choice would be an

eigenvector of G. Ideally, the tolerance § is related to the accuracy achievable in [ and g.
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Two line searches were considered, one attempting to bracket the minimum on a line, the
other using a ratio of the reduction in f last achieved on that line to the estimated next
reduction achievable. Numerical results for both are given in Section 9 as search 1 and search
2, respectively. Not requiring bracketing typically reduces the number of function evaluations
required, but increases the number of iterations. Thus, one would expect search 1 to be best
for problems where gradient evaluations are significantly more expensive than function

evaluations, and search 2 to be best for problems where these costs are approximately equal.

In the next section we describe the convergence test used and motivate the use of other
directions of movement (e.g. coordinate lines or eigenvectors) in addition to the quasi-Newton

directions.

It is desirable for all variable metric algorithms to have a restart mechanism. In our
algorithm the following heuristic is used for restarting. [t is tied to the line search. If (a} n+1
updates have been achieved since the most recent restart, and (b) on each of 3 successive
iterations, 5 or more function evaluations are required in the line search, then the procedure is
restarted. H is rescaled on any restart. 3 and 5 were chosen heuristically. We probably
should have excluded directions of negative curvature from this test; however, this was not
done. In the tests run, restarts occurred only infrequently. The idea of throwing away all the

information accumulated to date and starting fresh does not appeal to us.
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8. Alternative Directions of Search and the Convergences Tests.

In addition to the non—quasi-Newton directions that can be generated by the full QP, two
other families of vectors can be used when the quasi-Newton directions on subsets of the
constraints are not acceptable. Whenever Hy=s, Theorem 4 suggests that we use an eigenvec-
tor w of ETGE such that s=nﬁwk. Hy#s and (g*)'s#0. Theorem 5 says that if Hy#s, but
y'(Hy-s)=o0, then we can find a suitable coordinate vector e; which will allow an update. In
the numerical results described the eigenvectors of ETGE were not computed, coordinate lines
were used in both situations. Initially the coordinate lines were ordered according to the size
of gj» scaled using the Pij generated in finding H°. The coordinate lines were considered
cyclically within this ordering. Coordinate lines were also used whenever the inner product of
the projected gradient with the computed direction of movement vanished. Since we do not

require H and G to be positive definite, wHw can vanish when Hw#o.

If a successive check of all the coordinate lines at a given iterate yields no descent, then
the procedure terminates. When we stop, because of the minimum step requirement, we are
only near a Kuhn-Tucker (hopefully minimum) point. The distance from the 'minimum’
depends upon the distortion of the local contours of the function being minimized. The
following Theorem gives an estimate of this error in the unconstrained case for f a quadratic

function.

Theorem 6.  Let f be a quadratic function, f(x)= x'Qx/2 + d'x where Q>o0. For any
8>0 and scales Pjj» 1<j<n, if at some point x*, f(x‘tﬁp”cj) > f(x*) for all 1 <j<n.
Then

“"il <p”-80“/2
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and

)
x* - xopt < —— (3p::2Q. )2
Il ptl | 200 P;;2Q;;

where A (Q) is the minimum eigenvalue of Q.

Proof. Since f is a convex quadratic function, for each j and for all |a| > p;;d.
di(@)= f(x*+ae)) - [(x*) = ag;*+ o2Q;;/2 >o.

The minimum of ¢j(a) occurs at a;= -gj‘/ij and ¢j(aj) <o. Furthermore, ¢j(o)=o=¢(2aj).

Therefore, ¢j(a) <o in the interval [0,2aj] and therefore, Pj,‘5> 2a;. Substituting for a; and
rearranging we get
| 8;* | <p;;8Q;;/2.
(21)
Combining (21) and the fact that | gopt | =0, we get for each j
[[Q(x*-xopH)} | < p;idQ;;/2
Therefore,
82
A% | x*-xopt| |25 | |Q(x*-xopt) | |2 < — 2p;;?Q;®
or
| Ix*-xopt| | < (2p;;2Q;;>)'/2,
p 21(Q) Pji~Nij
where A (Q) is the smallest eigenvalue of Q.
QED.
Theorem 7. If we used the eigenvectors of Q, v,, 1 <k<n, in Theorem 6, then we obtain
Ty# g T k 3
|ng |<—2-|m;("”’kk/\, [ (22)
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and
8 S - 9 2
| | x*-xopt| | < —_)( 1lm"}:|pkk/\,jk|l‘)'/‘ (23)

In (22) and (23) the minimum is taken over those k with vJ"‘;éo.

Proof. For the eigenvectors U <j<n, the minimal allowed step in the line search along

' corresponding to the scales py,.1<k<n, is § mink(p,\k/v]k). The revelant expansion is

¢j(a)= f(x‘+uvj)- f(x*)= ag‘vj + az)\j/Z where }‘j is the eigenvalue of Q corresponding to vj.

But the minimum of ¢; occurs at a;= —g‘vj/)\j, (pj(al)(o, ¢j(o)=0=¢j(2aj). Therefore,

1) mkin (pkk/vjk) > 2a; .

Rearranging we obtain (22).

Since [ is quadratic, Q(x*-xopt)=g*. Let V be the matrix whose columns are the v;

1‘
1<j<n. Then introducing V as a basis, we obtain
(VTQV) VI(x*-xopt)=VTv(VTg*)
or AVT(x*-xopt)=VTg*
where A is the diagonal matrix with entries )\j. 1<j<n. Therefore, from (22)
T ) i .
IVJ- (x*-xopt) | < —2—| mlzn(pkk/vj )]

Summing over components gives us (23).

Q.E.D.

The absence of A(Q) in the estimate (23) tells us (as expected) that the directions v, are a

better choice than the €;- Thus, if G is a good approximation to Q, we would probably do

better to use the eigenvectors of G rather than the coordinate lines.
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In the next section we present some numerical tests, problems with and without box

constraints, and with and without noise added to the function and gradient evaluations.
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9. Numerical Results

A computer program was developed as the optimization part of a circuit design package
and has been used on circuit design problems. However, it does not seem practical to use such
functions as test problems since other researchers would not have access to the circuit
generating package used to evaluate these functions and gradients. Therefore, so that future
comparisons can be made, we present some results for a few other functions: most are
standard test functions found in the optimization literature. The test functions used are listed
below with their starting values, and bounds

Constraimed Problems

1) FUNCTION FHOLZ (Himmelblau [25])

99 -(u;x:)‘“
f(x).X2,%3) = 2 (e ——) -01i)?
] i=1 X
1
s

5
u. =25 + (-50 In(.011))

Bounds: I < x; < 100
0 < xp £ 256
0 < x3 £ 5
X2 = . (10, 1.25, .3)
xopt = (30, 2.0, 1\5)
f(xopt) = 0.

2) FUNCTION FRECP (Dixon [26])

f(X).X3.%3) = (x5-5)% + (x;+%;2)2 + x32/x,




Bounds: 10 € xy

X = (1,2,1)

(1073, 1.234, 0)

xopt

f(xopt) 16.5045855

3) FUNCTION FB3

fB3(z),25.zy) = (1002}, .01 z,, z3)

where f(x,y,2)=az2(1-B{{x+y-3)* + (y-x-.8)))

+y((x+y-3)2 + (y-x-.8)2)

+2(1-2)%(-9.95x2 + 1.25xy+ 2.48y?)

a=.001,8=2500,y=>5

Bounds: .01< 7z, < .02
100< 7z, < 200

0<s 23 £ 1

20 = (019, 110, .9)
zopt = (.02, 110.29 ,0)
fB3(zopt) = -53.5985294

4) FUNCTION FB6

[B6 (2y.29.23,24.25.2¢) = {B3(2.25.24) [B3(24.25 .2)

Bounds: .01< 7,7, < 02

100< 75,24 € 200




z> = (G151, 15t 921, (0rS; 150, .92)
zopt : there are several minima,
f(zopt) = -275.49644, -346.091, -402.311332

Unconstrained Problems

(1) FUNCTION FROSE

f(xy.%3) = 100 (x;2 - x5)% + (1-x,)?
= 1.2, 1)
xopt = ¢, 1)
f(xopt) =0.

(2) FUNCTION FWOOD

F(X{.X2.X3.X) = 100(x5-x;2)% + (1-x)? + 90(x4-x;7)2

+ (1-x3)% + 10.1((x2-1)7 + (x4=1)7) + 19.8(x,-1)(x4-1)

x0 = (-3,-1,-3;-1)
xopt = (1,1,1,1)
f(xopt) = 0.

(3) FUNCTION FEASY

1

ix) = x'Qx-x

Page
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where Q = 96.45 53.23 73.98 61.33
53.23 4593 62.14 45.11
78.98 62.14 89.14 62.45

61.33 45.11 62.45 47.05

and g = (1,4,2,3)

X0 = (0,0,0,0)
xopt = (.1304, .8245 . 4068, .3886)
f(xopt) = -11.7182934

(4) FUNCTION FPOWL

(X)X, X3, Xg) = (X + 10 x9)2 + 5 (x3-%)7 4 (x2-2x3)% 4 10(x;-x)*

X9 = (3, -L01)
xopt = (0,0,0,0)
f(xopt) = 0

Of the constrained problems, FHOLZ (Himmelblau [25]) and FRECP (Dixon [26]) have
appeared in the literature. FB3 and FB6 were constructed specifically for these tests as
problems that would involve much hitting and releasing of constraints before a local minimum

could be achieved: and moreover, so that their Hessians are indefinite at each of the minima.

We note that the initial point used in the FHOLZ tests was not the same as that used in
Himmelblau [25]. At the starting point in [25] FHOLZ is very flat and the 2 Harwell methods

used would not move from that point. To obtain comparisons, we therefore, moved to a more
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reasonable starting point.  The starting points for FB3 and FB6 were chosen such that the

procedure must circumvent a saddle point to get to a minima.

FRECP as stated in Dixon [26] involves a constraint y3>y|2. We have transformed the
variables and mapped this constraint into x;>0. Of course at x;=0 , FRECP is not differentia-
ble; near x;=0 it has steep derivatives however, the constraint x;> 10 | is not too severe, and

all the algorithms behave well.

For the unconstrained problems, FROSE FWOOD, and FPOWL are standard test
functions. FROSE and FWOOD each have a banana—shaped valley, FWOOD also has regions
of negative curvature and saddle points. FPOWIL has a singular Hessian at its optimum.

FEASY is a simple positive definite quadratic function; everything should work well on it.

For the purposes of comparsion we compared the new algorithm(s) with the correspond-

ing algorithms in the Harwell Subroutine Library [27]. Those used were

Harwell name Referred to as
VEO3A CFletcher
VEOSAD Buckley
VAO9AD Fletcher
VAO4AD Pow-no-drv

The first two, VEO3A and VEO5SAD, are variable metric algorithms for linearly constrained
problems with box constraints.  VEO3A is due to Fletcher [28] and solves a full quadratic
programming problem in a variable size box at cach iteration. VEOSAD is duc to Buckley [29]
and is a modification of Goldfarb’s lincarly constrained algorithm [17].  The last two,
VAO9AD and VAO4AD, are for unconstrained problems.  VAO9AD is a variable metric
algorithm due to Fletcher [30]. VAO4AD is Powell's no—derivative procedure [31]. VEO3A
was only available in the single precision version: roundoff in the 370-168 could be 10°°, so

the results for CEletcher should be viewed in this light.
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Tests were run on the eight test functions with and without noise. For each function,
noise, ¢, in the function values was simulated by specifying a relative error, r and an absolute
error a, and then setting the error,

e=y(rlf| + a)
where y is a uniformly distributed random variable in the interval (-1,1]. Noise in the gradient
was generated similarly. We realize that this impgrl'cclly simulates the effects of truncation
error for functions that depend on the solutions of differential equations. But, we do not have
a good model for the truncatior error, and we expect that the simulated effect is worse than
the truncation effect. Thus, if a procedure works reliably in the presence of our simulated

error we expect it would work well in the presence of truncation error.

The results of all tests are in Table 1. They are separated by function, cach has a run
with no noise, with single precision noise, and with a lot of noise. The number of functions
and gradients required for each procedure is given. For each of the Harwell routines, the
convergence criterion was |Ax;| < 10, 1<i<n. For the algorithm described in this paper,
the tolerance 6=10, and the minimum Ax was obtained by scaling as described in Section 7.
Convergence occurred when a successive search at minimum Ax of the coordinate lines through
the current iterate yielded no descent; or a consistency check, designed to spot when the errors
in the gradient or function evaluations are dominating the minimization had been violated a

total of 3 times.

In the test results in Table 1, the algorithm described in this paper is called BORI, for
box constrained rank I. Four versions of BCRI were tested. BCRI(I,1) and BCRI(2,1) are
direct implementations of the procedures described, differing only in the line search used
Line search | requires more function evaluations and attempts to bracket the minimum before
leaving the search. Line search 2 leaves the search as soon as it has achieved a reasonable

decrease in the function.  Both searches use only function values with the exception of the

E— —— —




Page 40 3

gradient at the starting point of the search. Use of line search 2 often results in an increase in

the number of iterations over line search 1 and thus an increase in the number of gradient

|
|
|

evaluations. In the circuit design applications, once a function evaluation is made, a gradient
evaluation costs the same as another function evaluation, so search 2 is reasonable. However,

in other applications gradient evaluations may cost some multiple of a function evaluation.

For example, if we are computing derivatives by differencing, we would want to minimize the

number of iterations and hence line search | would be more appropriate.

BCR1(1,1) and BCR1(2,1) both solve a quadratic subprogram only on those iterations
where at least one constraint is active. Fach first attempts to solve a small QP using the QP
algorithm in Canon, Cullum and Polak [19]. If this fails (which can happen only if G is

indefinite), or if d'Gd < 0, g'd > 0 or F'GFE has a negative diagonal element where E is that

part of the identity corresponding to the variables designated by the small QP as free, then a
full-sized QP (using the bounds min (| x,-t;|, 100p;) , 1 < i < n, where ( is the appropriate

upper or lower bound) is solved using Fletcher and Jackson [20].

A modified version of BCR1 was also tested, and this is labelled BCRI(1,4) and

BCR1(2,4) in the table where 1 and 2 again correspond to the 2 searches used. BCRI(«,4)

1 solves the full-sized QP at cach iteration to determine the direction of search. One might
expect, since this approach is global, that convergence should improve over BCRI1(1,1) and

BCRI1(2.1). However, the numerical results indicate that this is not true.

The total work required is given as the sum of FCNS plus GRDS. This only makes sense
if the function and gradient evaluations have equal cost.  Otherwise, the 2 terms must be
weighted by their relative costs.  Moreover, we are concerned here with problems where the
cost of a function or gradient evaluation dominates the cost of the computations done in the

optimization algorithm.
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On this basis of work done, we would judge BCRI1(2,1) to be the best of the four options
for BCR1. This method proved to be reliable and efficient in the presence of box constraints
and noise. Furthermore, the results indicate that it compares favorably with VAO9AD, an
excellent unconstrained method (judged by Himmelblau to be the best of those tested by him).
Performance did not degrade in the presence of noise. In all cases BCR1(2,1) terminated at
a reasonable point, either at or near a local minimum, or at a point where it could not be

expected to proceed because the noise was of the same magnitude as the function.

BCR1(1,1) was as reliable as BCR1(2,1). In most cases, it used more function values but
fewer gradients then BCR1(2,1). Thus, one might expect it to be more efficient on problems

where the cost of computing a gradient is a multiple of the cost of a function evaluation.

We had expected that BCR1(1,4) and BCR1(2,4) would perform better than BCR1(1,1)
and BCR1(2,1) since they use global information on each iteration. However, they did not.
Perhaps the size of the box used with the algorithm in [20] was too large or should have been
allowed to vary as is done in VEO3A (CFletcher). However, the results in Table 1 for
CFletcher do not indicate that this would be a profitable direction to pursue; since CFletcher
did not perform well on any problem except FRECP. This comment should be tempered with
the comment that CFletcher is a single precision routine. As the table indicates for FB3, using
the scaling suggested by Fletcher, termination at the saddle point occurred. However, using no
scaling, the procedure went to the minimum of FB3. For FB6 it went to the saddle point on

all scalings tried. For FHOLZ termination occurred at a noncritical point.

VEOSAD (Buckley) did not perform reliably on any function except FRECP.  As
indicated for FB3 and FB6, when the initial point was shifted closer to a local minimum,
VEOSAD produced that local minimum. This leads us to believe that we had the procedure set
up properly. The output of VEOSAD obtained indicates that not enough safeguards are built

into the line searches. In particular, on some runs bounds were violated, and when noise was
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present the procedure did not recognize it and terminate the iterations when the noise
dominated the minimization. On FB3 and FB6, it terminated normally, but at points that are
not local minima or saddle points. In each of these 2 cases it failed to allow movement along a
good coordinate direction. As stated earlier FB3 and FB6 were designed to be difficult to
minimize because they require much hitting and releasing of constraints. Moreover, the

Hessians are indefinite at the minima.

For the unconstrained algorithms, VAOYAD (Fletcher) exhibited good behavior in the
presence of noise on all functions except FWOOD. We note that with a smaller convergence
criterion Fletcher did achieve the minima of FWOOD when there was no noise. Remarks in
the Harwell write—up of this program indicate that some thought was given to its performance
in the presence of errors and certainly its performance in the presence of error substantiates

this.

Tests on Powell’s no derivative algorithm are included to see if a procedure that uses only
runction values but does not use differencing to get derivatives, and that works on the
principle of conjugate directions, would work well in the presence of noise. Indications are
that it works well with a moderate amount of noise, at least on the small dimensional problems

tested. With a lot of noise, it did not work as well as the variable metric algorithms.

The work—counts for the Harwell routines were obtained as follows. Both Cfletcher and
fletcher have a function, gradient subroutine that evaluates both simultaneously, so that in
Table 1, in all cases for these two methods FCNS=GRDS. From the write—ups, it was not
clear whether each time the function is called, the gradient information is also used in these
algorithms. If this is not the case, then these algorithms may be more efficient than is

indicated by Table 1. For Buckley, the function and gradients calls are separated.
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As is usually the case in using a program written by someone else, one is never absolutely
certain that one has set up the subroutine correctly or that a good or best set of the algorithm
parameters has been fed into the program. We tried to take the best set of parameters. In
addition, when a program performed unreliably, a different initial point or scaling was used to
be certain that with a given function and algorithm a minimum could be obtained under

different circumstances.
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10. Summary. The tests validate the theoretical results of this paper that an algorithm based
upon the SR1 update should perform reliably and efficiently in the presence of box constraints

and errors.

For the unconstrained problems tested, with and without errors, the small differences
between BCR1(2,1) and Fletcher can be understood by the fact that BCR1(2,1) may use n
additional function and gradient evaluations in terminating. The results in Table 1 substantiate
the claim that BCR1 is efficient in the presence of error. The results presenied for constrained
problems do not allow for comparison with an existing, efficient, reliable algorithm. However,
BCR1 was reliable on box constrained problems and we feel we can imply from the compari-

sons on unconstrained problems that it is also efficient.

Moreover, the tests indicate that all the points in the motivation were well taken. In
particular, it does seem important to use all the information available to tell when to drop a
constraint, and to be able to pick up the true character of a function near a saddle. Moreover,
the BCR1 procedure is simple, there is no bookkeeping and no matrix projections and no

explicit use of multipliers for the box constraints.

As designed, the procedure handles only box constraints directly. In the circuit design
work, more general constraints are treated using penalty functions. It would seem that one
could use a program such as this as an inner loop in a penalty—multiplier procedure for the

minimization of a general function subject to general constraints.

One final comment. Currently, the algorithm identifies when noise is controlling the
procedure and terminates when it makes such an identification. It does this even though the
direction that it has is good so that termination would not have happened if a better inital step

in the line search had been taken. We are working on this aspect.
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TABLE 1

FON. FERROR METHOD
NAME  (REL.,ABS. )

PRS- L 00;0) — BCRI(1,1)
FB3 (0,0) BCR1(1,4)
FB3 (0,0) BCR1(2,1)
FB3 (0,0) BCR1(2,4)
FR3 (0,0) BUCKLEY
FB3 (0,0) CFLETCHER
FB3 (1E-5,1E-6)  BCR1(1,1)
FB3 (1E-5,1E-6) BCR1(1,4)
FB3 (1E=5,1E=6) BCRI{2,7)
FB3 (1E-5,1E-6) BCR1(2,4)
FB3 (1E-5,1E-6) BUCKLEY
FB3 (1E-3,1E=6)  BCRI(1,1)
FB3 (1E-3,1E-4) BCR1( 1,4 )
FB3 (1E-3,1E-4) BCR1(2,1)
FB3 (1E-3,1E-4) BCR1(2,4)
FB3 (1E-3,1E-4) BUCKLEY
FB6 (0,0) BCR1(1,1)
FB6 {0,183 BCR1(1,4)
FB6 (0,0) BCR1(2,1)
FB6 (0,0) BCR1(2,4)
FB6 (0,0) BUCKLEY
FB6 (0,0) CFLETCHER
FB6 (1E-5,1E-6) BCR1(1,1)
FB6 (1E-5,1E-6) BCRT1( 1.4)
FB6 (1E-5,1E-6) BCR1(2,1)
FB6 (1E-5,1E-6) BCR1(2,4)
FB6 (1E-5,1E-6) BUCKLEY
FB6 (1E-3,1E-4) BCRIC1,1)
FB6 (1E-3,1E-4) BCR1(1,4)
FB6 (1E-3,1E-4) BCR1(2,1)
FB6 (1E-3,1E-4) BCR1(2,4)
FB6 (1E-3,1E-4) BUCKLEY

FRECP TORe) - - - UBERAT T

FRECP (0,0) BCR1(1,4)

FRECP (0.0) BCR1(2,1)

FRECP (0,0) BCR1(2,4)

FRECP (0,0) BUCKLEY

FRECP (0,0) CFLETCHER

FRECP (1E-5,1E-6)  BCR1(1,1)

FRECP (1E-5,1E-6) BCR1(1,4)

FRECP ( 1E-5,1E-6) BCR1(2,1)

FRECP (1E-5,1E-6) BCR1(2,4)

FRECP ( 1E-5,1E-6) BUCKLEY

FRECP (1E-2,1E-3)  BCR1(1,1)

FRECP (1E-2,1E-3) BCR1(1,4)

FRECP (1E-2,1E-3) BCR1(2,1)

FRECP (1E-2,1E-3) BCR1(2,4)

FRECP (1E-2,1E-3) BUCKLEY

FCNS

3

30
59
25
16

92

38
46
33
27

42

S0

480

42
36
44
47
115

34
31
34

oy =

120

g

43
27
38
120

oY

fYe

GRDS

10
10
14
14
13

13
14
20
30

© -275.49644

e

FINAL

-53,5985294
-53.5985294
=53.5985294
,C’j'
-8.517287

CE-4

5985294

~53.598526
=83 .

-53_.5985254

-53.5985293

8.5173

1E-3
9.9E-4
1E-3
9.9E-4
1E-3

-402.311332
-275.49644
-346.091
-12.402465
6.0E-6

6. 3E-7
-275.49644
-346.091
-12.4021379

6E-5
3E-S
1.2E-4
-1.3E-5
2.066

16.5045855
16.5045855
16.5045862
16.5045855
16.5045855
16.504577¢

16.5045908
16.5045855
16.50458¢
16.504608
16.5045856

16.6575
16.51107
16. 736
16.556
17.15

VALUE

T T

WORK

—

39
33
35

49
58
49

39

34
36
DY
39

134

s

144
48
70

6‘]
70

44
41
(2%

41

74
56
41
58
150

COMMENTS

(53, (8
{3) =)

(4),(5)

g )
(2
(2)

8 )42}

5 N

[

(S),(4)




E‘
v

P

FHOLZ
FHOI

FHOLZ
FHOLZ
FHOLZ
FHOLZ

FHOLZ
FHOLZ
FHOLZ
FHOLZ
FHOLZ

FHOLZ

FHOLZ
FHOLZ
FHOLZ

FEASY
FEASY
FEASY
FEASY

FPOWL

FPOWL
POWL

"POWL

POWL

POWL
POWL
POWL

POWL,

FPOWL

POWL

FPOWL

I8

F

WOOD
WOOD
WOOD

WOOD

WOOD
WOOD
WOOD
WOOD

K

(0,0) BCR1{17,1) 112 34 8E-14 146 (1)
; H\il(l 4) 104 34 4.7E=13 138 (1)
(0, BCR ;_, 1) 69 44 TE=13 113 (1)
(0,0) BCR1 L4 63 39 1.6E-13 102 (3)
(0,0) BUCKLEY 12 8 3.76 ~ (6)
),0) CFLETCHER 181 181 4.171 = (4)

(1E-5, 1E-6) BCR1(1,1) 95 29  6.4B-8 124 R

( 1E-5,1F BCR1(1,4) 130 35 4E-7 165 (2)

(1E-5,1E-6 ) BCR1(2,1) 70 39 8E-9 109 (2)

( 1TE-5,1E-6) BCR1(2,4) 34 16 5.6E- - (5)

(1E~5,1E=6) BUCKLEY 12 8 3.76 = (6)

(1E=2,18-3) BCR1(1,1) 38 R 4,94 B e

(1E-2,1E-3) BCR1(1,4) 43 11 5.53 . (5)

L:y-;,:a—s» BCR1(2,1) 44 20 SE-3 64 (2)

(IL—. 7-3) BCR1(2,4) 25 9 5.6 = (5)

(1E- 1—1) BUCKLEY 120 13 TE-4 133 (4),(2)
GO TBERW(1,1) 11 . 5, -1l 7182934 16 (1)
(0,0) BCR1(2,1) 9 6 -11.7182934 15 (1)
(0,0) FLETCHER 14 14 -11.7182934 28 (1)
(0,0) POW.NO-DRV. 117 =11.7182934 117 (1)

(1E-5,1E-6) _ BCRI(1,1) 16 5 =i 71872952 T

(1E-5,1E-6) BCR1(2,1) 16 12 -11.7182929 28 (2)

{ 1E-5, 1E-6) FLETCHER 16 16 ~.7182933 32 (2)

( 1E-5,1E-6) POW.NO-DRV 114 -11.7182496 114 (2)

/ (1E-2,1E-3) BCR1(1,1) 24 10 -11.7182679 34 (2}

tlt—3,1E~3) BCR1(2,1) 20 10 -11.714795 30 (2)

( 1E-2,1E~3) FLETCHER 13 13 = a8 26 (2)

{ 1E=2,,18=3) POW.NO-DRV 177 -2.52 = (5)
(0,0) BCR1(1,1) 87 29 6.4E-14 116 S
(0,0) BCR1(2,1) 53 45 S5E-17 98 (1)
(0,0) FLETCHER 48 48 3E-11 96 (1)
(0,0) POW.NO-DRV 290 3E-11 290 (1)

(1E-5,1E-6)  BCR1(1,1) 90 25 IBT 115 12

(1E-5,1E-6) BCR1(2,1) 35 24 1.3E-6 59 {2y

(1E-5,1E-6) FLETCHER 38 38 1.3E-7 76 (2)

(1E-5. 1E-6 ) POW.NO-DRV 309 7.6E-7 309 (2)

Tﬁij)ifmi}  BCRICT, 1) gl 120 E-3 56 2

(1E-2,1E-3) BCR1( 2, 35 o2 7 6E-5 57 (2)

(1&—2,1r—3; FLETCHER 19 19 3.5E-3 38 (2)

(1E-2,1E-3) POW.NO-DRV 147 2.6583 - (5)
(0,05 BERIGI.TY 154 T 44 3E-7 198 A
(0,0) BCR1(2,1) 109 51 2.8E-10 160 (1)
(0,0) FLETCHER 22 27 7.87 2 (3)
(0,0) POW.NO-DRV 148 6E-10 148 t1)

(1E-7,1E-8) BCRI(1,1) 163 48 6.1E-9 211 (2)

{ 1E~7,1E~8) BCR1(2,1) 126 53 3.5E-9 179 (2)

{ 1E~7,1E=8) FLETCHER 22 22 7. 87 - (3)

(1E-7,1E-8) POW.NO-DRV 157 6.2E-9 157 (2)




Gia

FROSE (0,0) BERT(1,1) 68 21 5.6E~10 89 {
FROSE (0,0) BCR1(2,1) 61 34 2SS E=1 95 {33
FROSE (0,0) FLETCHER 44 44 1-2E=10 88 ()
FROSE (0,0) POW.NO-DRV 19 4. 5E-5 = €5}
FROSE ™ ( TE-7, 1E-8) BCR1(1,1) 68 2 9. 8E=11 89 {(2)
EROSE, (1E-7,1E-8) BER1(2,1) 62 30 2. 1E=-10 92 (2)
EROSE' (1E-7,1E-8) FLETCHER 44 44 1.8E-10 88 €2)
FROSE (1E=7,1E=8) POW.NO-DRV 27 4.5E=5 = (5')
FROSE ™ ("ME=2,1E-5) BCR1(1,1) 100 32 3. SB=7 T332 (2)
FROSE (1E-2,1E-5) BCR1(2,1) 66 34 €. 1E=71 100 £20)
FROSE (1E=-2,1E-5) FLETCHER 45 45 L. 3E=7 90 (2)
EROSE! \( 1E=2 TE=5') POW.NO-DRV 46 2.6E-3 = (5)

COMMENTS
(1) LOCAL MINIMUM
(2) LOCAL MINIMUM TO WITHIN ERROR
(3) STUCK NEAR SADDLE POINT
(4) EXCEEDED MAXIMUM NUMBER OF FUNCTIONS ALLOWED
(5) NOT A LOCAL MINIMUM
(6) ABORTED BY GOING OUT OF BOUNDS
(7) ABORTED BECAUSE OF TOO MANY DIVIDE CHECKS
(8) WENT TO MINIMUM WHEN STARTED AT DIFFERENT POINT
(9) WENT TO MINIMUM WHEN GIVEN DIFFERENT SCALE
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